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Abstract. Hopf algebra structures on the extendedq-superplane and its differential algebra
are defined. An algebra of forms which are obtained from the generators of the extended
q-superplane is introduced and its Hopf algebra structure is given.

1. Introduction

Differential geometry of Lie groups plays an important role in the mathematical modelling of
physics theories. A class of noncommutative Hopf algebra has been found in the discussions
of integrable systems. These Hopf algebras areq-deformed function algebras of classical
groups and this structure is called a quantum group [1]. The quantum group can also
be regarded as a generalization of the notion of a group [2]. Thus it is also attractive to
generalize the corresponding notions of differential geometry. Mathematical aspects of such
a generalization are promising. More recently it has been suggested that the zero branes in
matrix theory [3] should be identified with supercoordinates in noncommutative geometry
[4].

Noncommutative geometry [4] has started to play an important role in different fields
of mathematical physics over the last few years. The basic structure giving a direction
to the noncommutative geometry is a differential calculus on an associative algebra. The
noncommutative differential geometry of quantum groups was introduced by Woronowicz
in [5]. In this approach the quantum group is taken as the basic noncommutative space
and the differential calculus on the group is deduced from the properties of the group.
The other approach, initiated by Wess and Zumino [6], succeeded Manin’s emphasis [7]
on the quantum spaces as the primary objects, differential forms are defined in terms
of noncommuting (quantum) coordinates, and the differential and algebraic properties of
quantum groups acting on these spaces are obtained from the properties of the spaces. The
natural extension of their scheme to superspace [8] was introduced by Soni in [9].

The quantum superplane is the simplest example of a noncommutative superspace. We
have investigated the noncommutative geometry of the quantum superplane. In section 2
we introduce two noncommutative differential calculi on theq-superplane. One of them is
quite different from the calculus described in [9], whereGLq(1|1) covariance was assumed.
The graded Hopf algebra structures of the extendedq-superplane and these supercalculi are
given in section 3. In the following section we introduce two forms from the differential
algebra and also give the graded Hopf algebra structure of the obtained algebra of forms.
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2. Differential calculi on the q-superplane

Let us begin with the Manin superplane. The quantum superplane is defined as an associative
algebra whose even coordinatex and the odd (Grassmann) coordinateθ satisfy

xθ − qθx = 0 θ2 = 0 (1)

whereq is a nonzero complex parameter. The algebra ofq-polynomials will be called the
algebra of functions on the quantum two-dimensional supervector space (superplane) and
will be denoted byA.

In order to establish a noncommutative differential calculus on the quantum superplane,
we assume that the commutation relations between the coordinates and their differentials
are in the following form:

x dx = Adx x

x dθ = F11dθ x + F12dx θ

θ dx = F21dx θ + F22dθ x

θ dθ = Bdθ θ.

(2)

The coefficientsA,B andFij will be determined in terms of the complex deformation
parameterq. To find them we shall use the consistency of calculus. We first note that the
properties of the exterior differential. The exterior differential d is an operator which gives
the mapping from the generators ofA to the differentials

d : u −→ du u ∈ {x, θ}. (3)

We demand that the exterior differential d has to satisfy two properties: nilpotency

d2 = 0 (4)

and the graded Leibniz rule

d(fg) = (df )g + (−1)f̂ f (dg) (5)

where f̂ = 0 for even variables and̂f = 1 for odd variables. From the consistency
conditions

d(xθ − qθx) = 0 d(θ2) = 0

we find

F11+ qF22 = q F12+ qF21 = −1 B = 1. (6a)

Similarly, from

(xθ − qθx) dx = 0 (xθ − qθx) dθ = 0

one has

F12F22 = 0 (F11− qA)F22 = 0. (6b)

The system (6) has, at least, two solutions and we shall discuss them below.
We now define the commutation relations between variables and their differentials in

the following form

ZidZj = (−1)î(ĵ+1)CjikldZ
kZl (7)
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whereC ∈ End(C ⊗ C). Comparing (7) with (2) we obtain the general matrixC

C =


A 0 0 0
0 −F21 −F22 0
0 F12 F11 0
0 0 0 1

 . (8)

In the language of matrixC, associativity and consistency with the properties of d requires
thatC fulfil the following conditions:

C12C13C23 = C23C13C12 Ĉ12Ĉ23Ĉ12 = Ĉ23Ĉ12Ĉ23 (9)

whereC12 = C⊗I , etcĈ = PC andP is the superpermutation matrix. The general matrix
Ĉ may have, at least, one of two distinct forms:

ĈI =


p 0 0 0
0 0 pq 0
0 q−1 p − 1 0
0 0 0 1

 F12 = 0 (10a)

and

ĈII =


s 0 0 0
0 r q 0
0 qr − 1 0 0
0 0 0 1

 F22 = 0 (10b)

wherep, r, s ∈ C are free parameters. Similar matrices are found in [10] to obtain differential
calculi on the quantum plane.

The matrixĈI satisfies all required conditions. If we sets = qr then the matrixĈII also
obeys all required conditions [11]. Each of these matrices leads to a family of differential
calculi on theq-superplane.

So we have the following commutation relations. ForĈI

x dx = pdx x x dθ = pqdθ x

θ dx = −q−1dx θ + (1− p)dθ x θ dθ = dθ θ.
(11a)

For ĈII

x dx = sdx x x dθ = qdθ x + (qr − 1)dx θ

θ dx = −rdx θ θ dθ = dθ θ.
(11b)

In the case of family I, it is easy to check that the differential structure is invariant under
action of quantum supergroupGLq(1|1) (see, e.g. [12]) if we takep = q−2. Similarly one
can see, in the case of family 2, that the differential structure is invariant under action of
GLq,r (1|1) (see, e.g. [13]) if we sets = qr.

Applying the exterior differential d to the first and second (or third) relations of (11)
we obtain

(dx)2 = 0 dx dθ = pqdθ dx (12a)

for family I and

(dx)2 = 0 dx dθ = r−1dθdx (12b)

for family II.
A differential algebra on an associative algebraB is a z2-graded associative algebra0

equipped with an operator d that has the properties (3)–(5). Furthermore, the algebra0 has
to be generated by00 ∪ 01 ∪ 02, where00 is isomorphic toB. For B we writeA. Let
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us denote the algebra (as a matter of fact the module) generated by dx and dθ with the
relations (11) by01, where01 is isomorphic to dA, and the algebra (12) by02. Let 0
be the quotient algebra of the free associative algebra on the set{x, θ,dx, dθ} modulo the
ideal J that is generated by the relations (1), (11) and (12).

In section 3 we shall show that the algebraA (q-superplane), the algebra01 and also
02 are all the graded Hopf algebras and so is the algebra0.

3. Hopf algebra structures

A Hopf algebra structure on the quantum plane was introduced in [14]. In this section we
introduce a graded Hopf algebra structure on the algebraA (i.e. on theq-superplane) and
give the natural extension on0.

3.1. A Hopf algebra structure onA

We know, from section 1, that the quantum superplane,A, is an associative algebra over
a field k generated by two elementsx, θ obeying the relations (1). We can now define a
coproduct and a counit on the algebraA as follows.

The coproduct1 : A −→ A⊗A is defined by

1(x) = x ⊗ x
1(θ) = θ ⊗ x + x ⊗ θ
1(1) = 1⊗ 1.

(13)

The counitε : A −→ C is given by

ε(x) = 1 ε(θ) = 0. (14)

The algebraA with the coproduct and the counit has a structure of bi-algebra. One
extends the algebraA by including inverse ofx which obeys

xx−1 = 1= x−1x.

If we extend the algebraA by adding the inverse ofx then the algebraA admits a coinverse
(antipode)S : A −→ A defined by

S(x) = x−1 S(θ) = −x−1θx−1. (15)

The coinverse has the properties of an inverse and we haveS2 = 1. Indeed,

S−1(x) = S(x) S−1(θ) = S(θ).
Note that

1(x−1) = x−1⊗ x−1.

It is not difficult to verify the following properties of costructures:

(1⊗ id) ◦1 = (id⊗1) ◦1 (16)

µ ◦ (ε ⊗ id) ◦1 = µ′ ◦ (id⊗ ε) ◦1 (17)

m ◦ (S ⊗ id) ◦1 = ε = m ◦ (id⊗ S) ◦1 (18)

where id denotes the identity mapping,

µ : C ⊗A −→ A µ′ : A⊗ C −→ A
are the canonical isomorphisms, defined by

µ(k ⊗ u) = ku = µ′(u⊗ k) ∀u ∈ A ∀k ∈ C
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andm is the multiplication map

m : A⊗A −→ A m(u⊗ v) = uv. (19)

The multiplication inA⊗A follows the rule

(A⊗ B)(C ⊗D) = (−1)B̂ĈAC ⊗ BD. (20)

The coproduct, counit and coinverse which are specified above supply the algebraA
with a graded Hopf algebra structure.

3.2. A Hopf algebra structure on0

We first note that consistency of a differential calculus with commutation relations (1)
means that the algebra0 is a graded associative algebra generated by the elements of the
set{x, θ,dx, dθ}.

Since the algebra0 is generated by the generators set{x, θ,dx, dθ} we must only
describe the actions of comaps on the subset{dx, dθ}. To denote the coproduct, counit and
coinverse which will be defined on the algebra0 with those ofA may be inadvisable. For
this reason, we shall denote them with a different notation. To this end we consider a map
1̂R : 0 −→ 0 ⊗A such that

1̂R ◦ d= (d⊗ id) ◦1. (21)

Thus we have

1̂R(dx) = dx ⊗ x
1̂R(dθ) = dθ ⊗ x + dx ⊗ θ.

(22)

We now define a mapφR as follows:

φR(u1dv1+ dv2u2) = 1(u1)1̂R(dv1)+ 1̂R(dv2)1(u2). (23)

Then it can be checked that the mapφR leaves invariant the relations (11) and (12). One
can also check that the following identities are satisfied:

(φR ⊗ id) ◦ φR = (id⊗1) ◦ φR (id⊗ ε) ◦ φR = id. (24)

But we do not have a coproduct for the differential algebra because the map1̂R does
not gives an analogue for the derivation property (5), yet. So we consider another map
1̂L : 0 −→ A⊗ 0 such that

1̂L ◦ d= (τ ⊗ id) ◦1 (25)

and a mapφL with again (23) by replacingL with R. Hereτ : 0 −→ 0 is the linear map
of degree zero which givesτ(a) = (−1)âa. The mapφL also leaves invariant the relations
(11) and (12), and the following identities are satisfied:

(id⊗ φL) ◦ φL = (1⊗ id) ◦ φL (ε ⊗ id) ◦ φL = id. (26)

Let us define the map̂1 as

1̂ = φR + φL (27)

which will allow us to define the coproduct of the differential algebra. We denote the
restriction of1̂ to the algebraA by 1 and the extension of1 to the differential algebra0
by 1̂:

1̂|A = 1 1|0 = 1̂. (28)
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It is possible to interpret the first relation in (28) as the definition of1̂ and (27) as the
definition of 1̂ on differentials.

One can see that̂1 is a linear map and a homomorphism. In fact, for example,

1̂(x dx) = (φR + φL)(x dx) = 1(x)(1̂R + 1̂L)(dx)

and with (28)

1(x)1̂(dx) = 1(x)[1(1)(1̂R + 1̂L)(dx)].

Using the coassociativity of1, equation (16), we can also show the coassociativity of1̂ .
So the map1̂ is a coproduct for the differential algebra0.

Similarly, if we define a counit̂ε for the differential algebra as

ε̂ ◦ d= d ◦ ε = 0 (29)

and

ε̂|A = ε ε|0 = ε̂ (30)

one has

ε̂(dx) = 0 ε̂(dθ) = 0 (31)

where

ε̂(u1dv1+ dv2u2) = ε(u1)ε̂(dv1)+ ε̂(dv2)ε(u2). (32)

Here we used the fact that d(1) = 0.
The next step is to obtain a coinverseŜ. For this, it suffices to definêS such that

Ŝ ◦ d= d ◦ S (33)

and

Ŝ|A = S S|0 = Ŝ (34)

where

Ŝ(u1dv1+ dv2u2) = Ŝ(dv1)S(u1)+ S(u2)Ŝ(dv2). (35)

So the action of̂S on the generators dx and dθ is as follows:

Ŝ(dx) = −x−1 dx x−1

Ŝ(dθ) = −x−1 dθ x−1+ 2x−1 dx x−1θx−1.
(36)

Note that it is easy to check thatε̂ and Ŝ leave invariant the relations (11) and (12).
Consequently, we can say that the structure(0, 1̂, ε̂, Ŝ) is a graded Hopf algebra.

4. Hopf algebra structure of forms onA

In this section we shall define two forms using the generators ofA and show that the algebra
of forms is a graded Hopf algebra.

If we call themw andu then one can define them as follows:

w = dx x−1 u = dθ x−1− dx x−1θx−1. (37)

We denote the algebra of forms generated by two elementsw andu by �. The generators
of the algebra� with the generators ofA satisfy the following rules:
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(I)

xw = pwx θw = −wθ + (1− p)ux
xu = pqux θu = pquθ. (38a)

(II)

xw = swx θw = −qrwθ
xu = qux + q(qr − s)wθ θu = quθ. (38b)

The commutation rules of the generators of� are
(I)

w2 = 0 wu = uw. (39a)

(II)

w2 = 0 wu = qrs−1uw. (39b)

We make the algebra� into a graded Hopf algebra with the following costructures: the
coproduct1 : � −→ �⊗� is defined by

1(w) = w ⊗ 1+ 1⊗ w 1(u) = u⊗ 1+ 1⊗ u. (40)

The counitε : � −→ C is given by

ε(w) = 0 ε(u) = 0 (41)

and the coinverses :� −→ � is defined by

S(w) = −w S(u) = −u. (42)

One can easily check that (16)–(18) are satisfied. Note that the commutation relations (38)
and (39) are compatible with1, ε andS, in the sense that1(xw) = p1(wx), 1(w2) = 0
and so on.
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